facebook
favorite button
super instructor icon
Professeur fiable
Ce professeur a un délai et un taux de réponse très élevé, démontrant un service de qualité et sa fidélité envers ses élèves.
member since icon
Depuis janvier 2021
Professeur depuis janvier 2021
Cours à domicile en mathématiques et informatique et physique
course price icon
Àpd 18 € /h
arrow icon
Cours suites numériques

I – Généralités
Une suite numérique est une application de N dans R.
• Suite bornée
Une suite (Un) est majorée s'il existe un réel A tel que, pour tout n, Un ≤ A. On dit que A est un majorant de la suite.
Une suite (Un) est minorée s'il existe un réel B tel que, pour tout n, B ≤ un. On dit
que B est un minorant de la suite.
Une suite est dite bornée si elle est à la fois majorée et minorée, c'est-à-dire s'il
existe M tel que |Un| ≤ M pour tout n.

• Suite convergente

La suite (Un) est convergente vers l ∈ R si :
∀ε>0 ∃n0 ∈ N ∀n ≥ n0 |un−l| ≤ ε.
Une suite qui n'est pas convergente est dite divergente.
Lorsqu'elle existe, la limite d'une suite est unique.
La suppression d'un nombre fini de termes ne modifie pas la nature de la suite, ni sa limite éventuelle.
Toute suite convergente est bornée. Une suite non bornée ne peut donc pas être convergente.

• Limites infinies

On dit que la suite (un) diverge

Vers +∞ si : ∀A>0 ∃n0∈N ∀n ≥ n0 Un≥A
Vers −∞ si : ∀A>0 ∃n0∈N ∀n≤ n0 Un≤A.

• Limites connues

Pour k>1, α>0, β>0


II Opérations sur les suites

• Opérations algébriques

Si (un) et (vn) convergent vers l et l’, alors les suites (un+vn), (λun) et (unvn) convergent respectivement vers l + l’, ll et ll’.

Si (un) tend vers 0 et si (vn) est bornée, alors la suite (unvn) tend vers 0.

• Relation d'ordre

Si (un) et (vn) sont des suites convergentes telles que l'on ait un ≤ vn pour n≥n0,
alors on a :
Attention, pas de théorème analogue pour les inégalités strictes.

• Théorème d'encadrement

Si, à partir d'un certain rang, un ≤xn≤ vn et si (un) et (vn) convergent vers la
même limite l, alors la suite (xn) est convergente vers l.


III Suites monotones

• Définitions

La suite (un) est croissante si un+1≥un pour tout n;
décroissante si un+1≤un pour tout n;
stationnaire si un+1=un pour tout n.

• Convergence

Toute suite de réels croissante et majorée est convergente.
Toute suite de réels décroissante et minorée est convergente.
Si une suite est croissante et non majorée, elle diverge vers +∞.

• Suites adjacentes

Les suites (un) et (vn) sont adjacentes si :
(un) est croissante ; (vn) est décroissante ;

Si deux suites sont adjacentes, elles convergent et ont la même limite.

Si (un) croissante, (vn) décroissante et un≤vn pour tout n, alors elles convergent vers
l1 et l2. Il reste à montrer que l1=l2 pour qu'elles soient adjacentes.

IV Suites extraites

• Définition et propriétés

– La suite (vn) est dite extraite de la suite (un) s'il existe une application φ de N
dans N, strictement croissante, telle que vn=uφ(n).
On dit aussi que (vn) est une sous-suite de (un).
– Si (un) converge vers l, toute sous-suite converge aussi vers l.

Si des suites extraites de (un) convergent toutes vers la même limite l, on peut conclure que (un) converge vers l si tout un est un terme d'une des suites extraites étudiées.
Par exemple, si (u2n) et (u2n+1) convergent vers l, alors (un) converge vers l.

• Théorème de Bolzano-Weierstrass

De toute suite de réels bornée, on peut extraire une sous-suite convergente.

V Suites de Cauchy

• Définition

Une suite (un) est de Cauchy si, pour tout ε positif, il existe un entier naturel n0 pour lequel, quels que soient les entiers p et q supérieurs ou égaux à n0, on ait |up−uq|<ε.
Attention, p et q ne sont pas liés.

• Propriété

Une suite de réels, ou de complexes, converge si, et seulement si, elle est de
Cauchy




SUITES PARTICULIERES

I Suites arithmétiques et géométriques

• Suites arithmétiques

Une suite (un) est arithmétique de raison r si :

∀ n∈N un+1=un+r

Terme général : un =u0+nr.

Somme des n premiers termes :


• Suites géométriques

Une suite (un) est géométrique de raison q≠0 si :

∀ n∈N un+1=qun.

Terme général : un=u0qn

Somme des n premiers termes :

II Suites récurrentes

• Suites récurrentes linéaires d'ordre 2 :

– Une telle suite est déterminée par une relation du type :

(1) ∀ n∈N aUn+2+bUn+1+cUn =0 avec a≠0 et c≠0
et la connaissance des deux premiers termes u0 et u1.
L'ensemble des suites réelles qui vérifient la relation (1) est un espace vectoriel
de dimension 2.
On en cherche une base par la résolution de l'équation caractéristique :

ar2+br+c=0 (E)
– Cas a, b, c complexes
Si ∆≠0,(E) a deux racines distinctes r1et r2. Toute suite vérifiant (1) est alors
du type :
où K1 et K2 sont des constantes que l'on exprime ensuite en fonction de u0 et u1.

Si ∆=0, (E) a une racine double r0=(-b)/2a. Toute suite vérifiant (1) est alors du
type :


– Cas a, b, c réels
Si ∆>0ou ∆=0, la forme des solutions n'est pas modifiée.
Si ∆<0, (E)a deux racines complexes conjuguées r1=α+iβ et r2=α−iβ
que l'on écrit sous forme trigonométrique r1=ρeiθ et r2=ρe-iθ

Toute suite vérifiant (1) est alors du type :


• Suites récurrentes un+1=f(un)

– Pour étudier une telle suite, on détermine d'abord un intervalle I contenant toutes
les valeurs de la suite.
– Limite éventuelle
Si (un) converge vers l et si f est continue en l, alors f(l)=l.
– Cas f croissante
Si f est croissante sur I, alors la suite (un) est monotone.
La comparaison de u0 et de u1 permet de savoir si elle est croissante ou décroissante.
– Cas f décroissante
Si f est décroissante sur I, alors les suites (u2n) et (u2n+1) sont monotones et de
sens contraire




Fait par LEON
Informations supplémentaires
Venez avec cours de classe pour que je puisse évoluer l'enseignant de votre école
Aussi avec votre livre pour la matière concernes et les bords si vous avez
Lieu
green drop pin icon
|
Utilisez Ctrl + molette pour zoomer !
zoom in iconzoom out icon
location type icon
Cours au domicile de l'élève :
  • Autour de Douala, Cameroun
Présentation
Je suis un professeur très compréhensif et je me bats pour que l'élève puisse comprendre ce que je l'enseigne pour qu'il soit meilleur dans son établissement en la matière que je le répète.
Education
Lycée de Njombe, BEPC ,2014
Lycée de Njombe, PROBATOIRE,2016
Lycée de Njombe, BACCALAURÉAT C,2015
Institut Universitaire de technologie, DIPLÔME UNIVERSITAIRE DE TECHNOLOGIE,2017
Institut Universitaire de technologie, LICENCE DE TECHNOLOGIE,2018
Expérience / Qualifications
2ans déjà dans les répétitions de cours à domicile en mathématiques physique et informatique
Tous mes élèves ont toujours fiers de mes enseignements
Age
Enfants (7-12 ans)
Adolescents (13-17 ans)
Adultes (18-64 ans)
Seniors (65+ ans)
Niveau du Cours
Débutant
Intermédiaire
Avancé
Durée
120 minutes
Enseigné en
français
anglais
Disponibilité semaine type
(GMT -05:00)
New York
at home icon
Cours à domicile
Mon
Tue
Wed
Thu
Fri
Sat
Sun
00-04
04-08
08-12
12-16
16-20
20-24
L'arithmétique s'est au départ limitée à l'étude des propriétés des entiers naturels, des entiers relatifs et des nombres rationnels (sous forme de fractions), et aux propriétés des opérations sur ces nombres. Les opérations arithmétiques traditionnelles sont l'addition, la division, la multiplication, et la soustraction. Cette discipline fut ensuite élargie par l'inclusion de l'étude d'autres nombres comme les réels (sous forme de développement décimal illimité), ou même de concepts plus avancés, comme l'exponentiation ou la racine carrée. Une arithmétique est une manière de représenter formellement - autrement dit, « coder » - les nombres (sous la forme d'une liste de chiffres, par exemple) ; et (grâce à cette représentation) définir les opérations de base : addition, multiplication, etc

De nombreux nombres entiers ont des propriétés particulières. Ces propriétés font l'objet de la théorie des nombres. Parmi ces nombres particuliers, les nombres premiers sont sans doute les plus importants.

Nombres premiers Modifier
C'est le cas des nombres dits premiers. Ce sont les entiers naturels possédant uniquement deux diviseurs positifs distincts, à savoir 1 et eux-mêmes. Les dix premiers nombres premiers sont 2, 3, 5, 7, 11, 13, 17, 19, 23 et 29. L'entier 1 n'est pas premier car il n'a pas deux diviseurs positifs distincts, mais un seul, à savoir lui-même. Il existe une infinité de nombres premiers. En complétant une grille de taille 10 × 10 avec les 100 premiers entiers naturels non nuls, et en rayant ceux qui ne sont pas premiers, on obtient les nombres premiers appartenant à {1, ..., 100} par un procédé appelé un crible d'Ératosthène, du nom du savant grec qui l'inventa.

Nombres pairs et impairs Modifier
Les entiers naturels peuvent être divisés en deux catégories : les pairs et les impairs.

Un entier {\displaystyle n}n pair est un multiple de 2 et peut par conséquent s'écrire {\displaystyle n=2\,k}n=2\,k, avec {\displaystyle k\in \mathbb {N} }k\in\N. Un nombre {\displaystyle n}n impair n'est pas multiple de 2 et peut s'écrire {\displaystyle n=2\,k+1}n=2\,k+1, avec {\displaystyle k\in \mathbb {N} }k\in\N.

On montre que tout entier est soit pair soit impair, et ce pour un unique {\displaystyle k}k : on note {\displaystyle \forall n\in \mathbb {N} \quad \exists !k\in \mathbb {N} \quad \left(n=2\,k\lor n=2\,k+1\right)}{\displaystyle \forall n\in \mathbb {N} \quad \exists !k\in \mathbb {N} \quad \left(n=2\,k\lor n=2\,k+1\right)}.

Les six premiers entiers pairs sont 0, 2, 4, 6, 8 et 10. Les six premiers entiers impairs sont 1, 3, 5, 7, 9 et 11
Lire la suite
Cours Similaires
arrow icon previousarrow icon next
verified badge
Aurelien
Je propose des cours de mathématiques, physique et chimie à domicile pour aider les élèves à améliorer leurs compétences et leur compréhension de ces matières essentielles. Mes cours sont adaptés aux besoins spécifiques de chaque élève, en tenant compte de leur niveau actuel et de leurs objectifs d'apprentissage.

En mathématiques, je couvre un large éventail de sujets, allant des bases comme l'arithmétique et l'algèbre, jusqu'aux concepts plus avancés tels que la géométrie, les fonctions, les probabilités et les statistiques. J'utilise des méthodes pédagogiques interactives pour rendre les mathématiques plus accessibles et intéressantes pour les élèves, en utilisant des exemples concrets et des exercices pratiques.

En physique, j'enseigne les principes fondamentaux de la matière, tels que la cinématique, l'électricité, le magnétisme et l'optique. Je m'assure que les élèves comprennent les concepts théoriques tout en leur fournissant des expériences pratiques pour renforcer leur compréhension.

Je suis passionné par l'enseignement et j'ai une approche patiente et encourageante. Je m'efforce de créer un environnement d'apprentissage positif où les élèves se sentent à l'aise pour poser des questions et explorer les sujets en profondeur. Mon objectif est d'aider les élèves à développer une confiance en eux et à acquérir des compétences qui leur seront utiles tout au long de leur parcours scolaire.

Si vous cherchez un tuteur expérimenté et dévoué pour aider votre enfant à réussir en mathématiques et en physique, n'hésitez pas à me contacter. Je serais ravi de discuter de vos besoins spécifiques et de trouver la meilleure approche pour aider votre enfant à atteindre ses objectifs académiques.
verified badge
Leopold
Ce cours de mathématiques et de physique est conçu pour aider les élèves à développer une compréhension approfondie des concepts fondamentaux, tout en renforçant leurs compétences en résolution de problèmes. Que vous soyez en difficulté ou que vous souhaitiez simplement approfondir vos connaissances, ce cours est adapté à tous les niveaux.
Contenu du Cours
**Mathématiques :**
- **Algèbre :** Équations, inéquations, fonctions, polynômes.
- **Géométrie :** Propriétés des figures, théorèmes de base, trigonométrie.
- **Analyse :** Limites, dérivées, intégrales, applications pratiques.
- **Statistiques et probabilités :** Notions de base, distributions, analyses de données.
**Physique :**
- **Mécanique :** Lois du mouvement, forces, énergie, travail.
- **Thermodynamique :** Concepts de chaleur, température, lois des gaz.
- **Électricité et magnétisme :** Circuits électriques, lois d'Ohm et de Kirchhoff.
- **Optique :** Propriétés de la lumière, réflexion et réfraction.
Méthodologie
- **Approche personnalisée :** Chaque élève est unique. Je m'adapte à votre rythme d'apprentissage et à vos besoins spécifiques.
- **Exercices pratiques :** Des exercices variés et des applications concrètes pour renforcer la théorie.
- **Supports diversifiés :** Utilisation de vidéos, simulations et outils interactifs pour rendre l'apprentissage dynamique.
Évaluation
Des évaluations régulières permettront de suivre vos progrès et d'identifier les domaines à améliorer. Des retours constructifs seront fournis pour garantir une compréhension solide des concepts.
Conclusion
Rejoignez ce cours pour explorer le monde fascinant des mathématiques et de la physique. Ensemble, nous travaillerons à bâtir votre confiance et vos compétences dans ces matières essentielles.
message icon
Contacter Léon
repeat students icon
Le premier cours est couvert par notre Garantie Le-Bon-Prof
Cours Similaires
arrow icon previousarrow icon next
verified badge
Aurelien
Je propose des cours de mathématiques, physique et chimie à domicile pour aider les élèves à améliorer leurs compétences et leur compréhension de ces matières essentielles. Mes cours sont adaptés aux besoins spécifiques de chaque élève, en tenant compte de leur niveau actuel et de leurs objectifs d'apprentissage.

En mathématiques, je couvre un large éventail de sujets, allant des bases comme l'arithmétique et l'algèbre, jusqu'aux concepts plus avancés tels que la géométrie, les fonctions, les probabilités et les statistiques. J'utilise des méthodes pédagogiques interactives pour rendre les mathématiques plus accessibles et intéressantes pour les élèves, en utilisant des exemples concrets et des exercices pratiques.

En physique, j'enseigne les principes fondamentaux de la matière, tels que la cinématique, l'électricité, le magnétisme et l'optique. Je m'assure que les élèves comprennent les concepts théoriques tout en leur fournissant des expériences pratiques pour renforcer leur compréhension.

Je suis passionné par l'enseignement et j'ai une approche patiente et encourageante. Je m'efforce de créer un environnement d'apprentissage positif où les élèves se sentent à l'aise pour poser des questions et explorer les sujets en profondeur. Mon objectif est d'aider les élèves à développer une confiance en eux et à acquérir des compétences qui leur seront utiles tout au long de leur parcours scolaire.

Si vous cherchez un tuteur expérimenté et dévoué pour aider votre enfant à réussir en mathématiques et en physique, n'hésitez pas à me contacter. Je serais ravi de discuter de vos besoins spécifiques et de trouver la meilleure approche pour aider votre enfant à atteindre ses objectifs académiques.
verified badge
Leopold
Ce cours de mathématiques et de physique est conçu pour aider les élèves à développer une compréhension approfondie des concepts fondamentaux, tout en renforçant leurs compétences en résolution de problèmes. Que vous soyez en difficulté ou que vous souhaitiez simplement approfondir vos connaissances, ce cours est adapté à tous les niveaux.
Contenu du Cours
**Mathématiques :**
- **Algèbre :** Équations, inéquations, fonctions, polynômes.
- **Géométrie :** Propriétés des figures, théorèmes de base, trigonométrie.
- **Analyse :** Limites, dérivées, intégrales, applications pratiques.
- **Statistiques et probabilités :** Notions de base, distributions, analyses de données.
**Physique :**
- **Mécanique :** Lois du mouvement, forces, énergie, travail.
- **Thermodynamique :** Concepts de chaleur, température, lois des gaz.
- **Électricité et magnétisme :** Circuits électriques, lois d'Ohm et de Kirchhoff.
- **Optique :** Propriétés de la lumière, réflexion et réfraction.
Méthodologie
- **Approche personnalisée :** Chaque élève est unique. Je m'adapte à votre rythme d'apprentissage et à vos besoins spécifiques.
- **Exercices pratiques :** Des exercices variés et des applications concrètes pour renforcer la théorie.
- **Supports diversifiés :** Utilisation de vidéos, simulations et outils interactifs pour rendre l'apprentissage dynamique.
Évaluation
Des évaluations régulières permettront de suivre vos progrès et d'identifier les domaines à améliorer. Des retours constructifs seront fournis pour garantir une compréhension solide des concepts.
Conclusion
Rejoignez ce cours pour explorer le monde fascinant des mathématiques et de la physique. Ensemble, nous travaillerons à bâtir votre confiance et vos compétences dans ces matières essentielles.
Garantie Le-Bon-Prof
favorite button
message icon
Contacter Léon