facebook
favorite button
1/5
super instructor icon
Professeur fiable
Ce professeur a un délai et un taux de réponse très élevé, démontrant un service de qualité et sa fidélité envers ses élèves.
member since icon
Depuis mars 2021
Professeur depuis mars 2021
repeat students icon
1 élève régulier
Le choix privilégié de 1 élève régulier
Cours d'analyse de données avec Microsoft Excel - Maîtrise de Excel et Conception de Tableaux de bord
course price icon
Àpd 7.76 € /h
arrow icon
Microsoft Excel est un très puissant logiciel d'analyse des données. C'est une solution pratique à court à moyen et à long terme pour automatiser vos calculs, avoir un aperçu global et détaillé sur vos activités, et analyser vos données.

En tant que comptable, marketeur, agent commercial, sécretaire, commerçant, vendeur ou chef d'entreprise, une bonne maitrise de ce logiciel améliorera votre éfficacité, votre compétitivité, et vous fera gagner beaucoup de temps et d'argent. Quelque soit votre domaine d'activité, ce logiciel est conçus pour vous aider.

Au cours de cette formation, vous apprendrez :
- les bonnes pratiques, les fonctionnalités et les outils ;
- les fonctions et leur utilisation ;
- la manipulation de Tableaux croisés Dynamiques, des graphiques dynamiques,
- la conception des tableaux de bord,
- et vous allez acquerir des reflexes qui vous seront utiles pour toute votre carrière.

Durée de formation : 1 mois
Nombre d'heures : 24 heures

Je vous attends nombreux car nous avons beaucoup à partager.
Lieu
green drop pin icon
|
Utilisez Ctrl + molette pour zoomer !
zoom in iconzoom out icon
location type icon
Cours au domicile de l'élève :
  • Autour de Douala, Cameroun
location type icon
En ligne depuis le Cameroun
Présentation
Jeune camerounais avide de connaissance, Je suis un passionné du digital, et de l'automatisation des tâches. Au travail, j'aime créer des outils qui facilitent mes tâches et celles de mes collaborateurs.

Enseigner permet de rendre les gens autonome, et je crois que plus on enseigne, plus on découvre.

Patient et explicatif, je sais aussi motiver mes apprenants et revenir sommairement aux prérequis pour les aider à comprendre le contenu des formations.

Avec moi comme professeur, vous allez acquérir des compétences pratiques et techniques qui vous aideront à vous distinguer, mais aussi de connaissance théoriques qui vous aideront à pourvoir transmettre à votre tour.
Education
- Formation à l'installation des serveurs Web et la conception des sites Web
- Formation au marketing digital sur Google, OpenClassroom, Udemy, et Blueprint.
- Formation en programmation web (HTML, CSS, JavaScript, Laravel) de juin 2017 à août 2018
- DEA en physique obtenu à l'Université de Douala, Cameroun en 2017
- Licence en physique appliquée, obtenu à l'Université de Douala en 2014
- Baccalauréat série C, obtenu en 2010
Expérience / Qualifications
- Enseignant d'informatique (Word, Excel, PowerPoint, Access) - au Churchill Training Institute - depuis août 2018
- Assistant manager et digital marketer - au Churchill Training Institute - depuis janvier 2019
Age
Adolescents (13-17 ans)
Adultes (18-64 ans)
Seniors (65+ ans)
Niveau du Cours
Débutant
Intermédiaire
Avancé
Durée
90 minutes
120 minutes
Enseigné en
français
anglais
Commentaires
Disponibilité semaine type
(GMT -05:00)
New York
at teacher icon
Cours par webcam
at home icon
Cours à domicile
Mon
Tue
Wed
Thu
Fri
Sat
Sun
00-04
04-08
08-12
12-16
16-20
20-24
Au cours de cette formation, vous aurez l'occasion d'acquérir des compétences avancées pour une utilisation optimale et professionnelle du logiciel Microsoft Word.
Au programme,
- Mise en forme de texte
- Mise en page de documents
- Outil de Conception d'ouvrage (pagination, découpage en chapitres, table des matières, table des illustrations, bibliographie, page de garde, etc...)
- Impression
- Utilisation des outils développeurs
- Partage et travail collaboratif
- Astuces pour gagner en efficacité et rapidité.

Le cours débute par un test de connaissance qui nous permettra d'évaluer vos acquis et de nous focaliser sur l'essentiel.

Durée : 1 mois
Volume horaire : 24 h

Inscrivez-vous dès maintenant !
Lire la suite
Vous souhaitez captiver votre auditoire grâce à des présentations percutantes, claires et modernes ? Ce cours est fait pour vous !

Objectif : Vous apprendre à maîtriser PowerPoint (Microsoft 365) de A à Z pour créer des présentations professionnelles, visuelles et dynamiques, pour animer vos cours, pitchs, conférences etc...

Que vous soyez :
- Débutants n'ayant jamais utilisé PowerPoint,
- Étudiants, enseignants, formateurs,
- Professionnels souhaitant améliorer leurs présentations,
- ou simplement désireux(se) de présenter efficacement vos idées avec des supports visuels,
CE COURS EST FAIT POUR VOUS !


Qu'allez-vous apprendre ?

- Prise en main de l’interface PowerPoint et ses outils clés
- Création et mise en forme de diapositives (textes, images, graphiques, vidéos)
- Utilisation de thèmes, modèles, masques de diapositives
- Animations, transitions, minutage et scénarisation d'une présentation
- Intégration de contenus multimédias pour dynamiser votre message
- Astuces de design pour un rendu clair, élégant et professionnel
- Préparation à l’oral et diffusion d’un diaporama avec impact


Méthode pédagogique :

Cours 100 % pratique, basé sur des cas concrets, des exercices guidés, et la réalisation progressive d’une présentation complète. Un accompagnement personnalisé selon votre niveau et vos objectifs.

⏱️ Durée : Adaptée selon vos besoins (formation intensive ou étalée)

Rejoignez ce cours et transformez vos idées en présentations qui marquent les esprits !
Lire la suite
Voir plus
arrow icon
Cours Similaires
arrow icon previousarrow icon next
verified badge
Léon
Cours suites numériques

I – Généralités
Une suite numérique est une application de N dans R.
• Suite bornée
Une suite (Un) est majorée s'il existe un réel A tel que, pour tout n, Un ≤ A. On dit que A est un majorant de la suite.
Une suite (Un) est minorée s'il existe un réel B tel que, pour tout n, B ≤ un. On dit
que B est un minorant de la suite.
Une suite est dite bornée si elle est à la fois majorée et minorée, c'est-à-dire s'il
existe M tel que |Un| ≤ M pour tout n.

• Suite convergente

La suite (Un) est convergente vers l ∈ R si :
∀ε>0 ∃n0 ∈ N ∀n ≥ n0 |un−l| ≤ ε.
Une suite qui n'est pas convergente est dite divergente.
Lorsqu'elle existe, la limite d'une suite est unique.
La suppression d'un nombre fini de termes ne modifie pas la nature de la suite, ni sa limite éventuelle.
Toute suite convergente est bornée. Une suite non bornée ne peut donc pas être convergente.

• Limites infinies

On dit que la suite (un) diverge

Vers +∞ si : ∀A>0 ∃n0∈N ∀n ≥ n0 Un≥A
Vers −∞ si : ∀A>0 ∃n0∈N ∀n≤ n0 Un≤A.

• Limites connues

Pour k>1, α>0, β>0


II Opérations sur les suites

• Opérations algébriques

Si (un) et (vn) convergent vers l et l’, alors les suites (un+vn), (λun) et (unvn) convergent respectivement vers l + l’, ll et ll’.

Si (un) tend vers 0 et si (vn) est bornée, alors la suite (unvn) tend vers 0.

• Relation d'ordre

Si (un) et (vn) sont des suites convergentes telles que l'on ait un ≤ vn pour n≥n0,
alors on a :
Attention, pas de théorème analogue pour les inégalités strictes.

• Théorème d'encadrement

Si, à partir d'un certain rang, un ≤xn≤ vn et si (un) et (vn) convergent vers la
même limite l, alors la suite (xn) est convergente vers l.


III Suites monotones

• Définitions

La suite (un) est croissante si un+1≥un pour tout n;
décroissante si un+1≤un pour tout n;
stationnaire si un+1=un pour tout n.

• Convergence

Toute suite de réels croissante et majorée est convergente.
Toute suite de réels décroissante et minorée est convergente.
Si une suite est croissante et non majorée, elle diverge vers +∞.

• Suites adjacentes

Les suites (un) et (vn) sont adjacentes si :
(un) est croissante ; (vn) est décroissante ;

Si deux suites sont adjacentes, elles convergent et ont la même limite.

Si (un) croissante, (vn) décroissante et un≤vn pour tout n, alors elles convergent vers
l1 et l2. Il reste à montrer que l1=l2 pour qu'elles soient adjacentes.

IV Suites extraites

• Définition et propriétés

– La suite (vn) est dite extraite de la suite (un) s'il existe une application φ de N
dans N, strictement croissante, telle que vn=uφ(n).
On dit aussi que (vn) est une sous-suite de (un).
– Si (un) converge vers l, toute sous-suite converge aussi vers l.

Si des suites extraites de (un) convergent toutes vers la même limite l, on peut conclure que (un) converge vers l si tout un est un terme d'une des suites extraites étudiées.
Par exemple, si (u2n) et (u2n+1) convergent vers l, alors (un) converge vers l.

• Théorème de Bolzano-Weierstrass

De toute suite de réels bornée, on peut extraire une sous-suite convergente.

V Suites de Cauchy

• Définition

Une suite (un) est de Cauchy si, pour tout ε positif, il existe un entier naturel n0 pour lequel, quels que soient les entiers p et q supérieurs ou égaux à n0, on ait |up−uq|<ε.
Attention, p et q ne sont pas liés.

• Propriété

Une suite de réels, ou de complexes, converge si, et seulement si, elle est de
Cauchy




SUITES PARTICULIERES

I Suites arithmétiques et géométriques

• Suites arithmétiques

Une suite (un) est arithmétique de raison r si :

∀ n∈N un+1=un+r

Terme général : un =u0+nr.

Somme des n premiers termes :


• Suites géométriques

Une suite (un) est géométrique de raison q≠0 si :

∀ n∈N un+1=qun.

Terme général : un=u0qn

Somme des n premiers termes :

II Suites récurrentes

• Suites récurrentes linéaires d'ordre 2 :

– Une telle suite est déterminée par une relation du type :

(1) ∀ n∈N aUn+2+bUn+1+cUn =0 avec a≠0 et c≠0
et la connaissance des deux premiers termes u0 et u1.
L'ensemble des suites réelles qui vérifient la relation (1) est un espace vectoriel
de dimension 2.
On en cherche une base par la résolution de l'équation caractéristique :

ar2+br+c=0 (E)
– Cas a, b, c complexes
Si ∆≠0,(E) a deux racines distinctes r1et r2. Toute suite vérifiant (1) est alors
du type :
où K1 et K2 sont des constantes que l'on exprime ensuite en fonction de u0 et u1.

Si ∆=0, (E) a une racine double r0=(-b)/2a. Toute suite vérifiant (1) est alors du
type :


– Cas a, b, c réels
Si ∆>0ou ∆=0, la forme des solutions n'est pas modifiée.
Si ∆<0, (E)a deux racines complexes conjuguées r1=α+iβ et r2=α−iβ
que l'on écrit sous forme trigonométrique r1=ρeiθ et r2=ρe-iθ

Toute suite vérifiant (1) est alors du type :


• Suites récurrentes un+1=f(un)

– Pour étudier une telle suite, on détermine d'abord un intervalle I contenant toutes
les valeurs de la suite.
– Limite éventuelle
Si (un) converge vers l et si f est continue en l, alors f(l)=l.
– Cas f croissante
Si f est croissante sur I, alors la suite (un) est monotone.
La comparaison de u0 et de u1 permet de savoir si elle est croissante ou décroissante.
– Cas f décroissante
Si f est décroissante sur I, alors les suites (u2n) et (u2n+1) sont monotones et de
sens contraire




Fait par LEON
message icon
Contacter Dimitri
repeat students icon
Le premier cours est couvert par notre Garantie Le-Bon-Prof
Cours Similaires
arrow icon previousarrow icon next
verified badge
Léon
Cours suites numériques

I – Généralités
Une suite numérique est une application de N dans R.
• Suite bornée
Une suite (Un) est majorée s'il existe un réel A tel que, pour tout n, Un ≤ A. On dit que A est un majorant de la suite.
Une suite (Un) est minorée s'il existe un réel B tel que, pour tout n, B ≤ un. On dit
que B est un minorant de la suite.
Une suite est dite bornée si elle est à la fois majorée et minorée, c'est-à-dire s'il
existe M tel que |Un| ≤ M pour tout n.

• Suite convergente

La suite (Un) est convergente vers l ∈ R si :
∀ε>0 ∃n0 ∈ N ∀n ≥ n0 |un−l| ≤ ε.
Une suite qui n'est pas convergente est dite divergente.
Lorsqu'elle existe, la limite d'une suite est unique.
La suppression d'un nombre fini de termes ne modifie pas la nature de la suite, ni sa limite éventuelle.
Toute suite convergente est bornée. Une suite non bornée ne peut donc pas être convergente.

• Limites infinies

On dit que la suite (un) diverge

Vers +∞ si : ∀A>0 ∃n0∈N ∀n ≥ n0 Un≥A
Vers −∞ si : ∀A>0 ∃n0∈N ∀n≤ n0 Un≤A.

• Limites connues

Pour k>1, α>0, β>0


II Opérations sur les suites

• Opérations algébriques

Si (un) et (vn) convergent vers l et l’, alors les suites (un+vn), (λun) et (unvn) convergent respectivement vers l + l’, ll et ll’.

Si (un) tend vers 0 et si (vn) est bornée, alors la suite (unvn) tend vers 0.

• Relation d'ordre

Si (un) et (vn) sont des suites convergentes telles que l'on ait un ≤ vn pour n≥n0,
alors on a :
Attention, pas de théorème analogue pour les inégalités strictes.

• Théorème d'encadrement

Si, à partir d'un certain rang, un ≤xn≤ vn et si (un) et (vn) convergent vers la
même limite l, alors la suite (xn) est convergente vers l.


III Suites monotones

• Définitions

La suite (un) est croissante si un+1≥un pour tout n;
décroissante si un+1≤un pour tout n;
stationnaire si un+1=un pour tout n.

• Convergence

Toute suite de réels croissante et majorée est convergente.
Toute suite de réels décroissante et minorée est convergente.
Si une suite est croissante et non majorée, elle diverge vers +∞.

• Suites adjacentes

Les suites (un) et (vn) sont adjacentes si :
(un) est croissante ; (vn) est décroissante ;

Si deux suites sont adjacentes, elles convergent et ont la même limite.

Si (un) croissante, (vn) décroissante et un≤vn pour tout n, alors elles convergent vers
l1 et l2. Il reste à montrer que l1=l2 pour qu'elles soient adjacentes.

IV Suites extraites

• Définition et propriétés

– La suite (vn) est dite extraite de la suite (un) s'il existe une application φ de N
dans N, strictement croissante, telle que vn=uφ(n).
On dit aussi que (vn) est une sous-suite de (un).
– Si (un) converge vers l, toute sous-suite converge aussi vers l.

Si des suites extraites de (un) convergent toutes vers la même limite l, on peut conclure que (un) converge vers l si tout un est un terme d'une des suites extraites étudiées.
Par exemple, si (u2n) et (u2n+1) convergent vers l, alors (un) converge vers l.

• Théorème de Bolzano-Weierstrass

De toute suite de réels bornée, on peut extraire une sous-suite convergente.

V Suites de Cauchy

• Définition

Une suite (un) est de Cauchy si, pour tout ε positif, il existe un entier naturel n0 pour lequel, quels que soient les entiers p et q supérieurs ou égaux à n0, on ait |up−uq|<ε.
Attention, p et q ne sont pas liés.

• Propriété

Une suite de réels, ou de complexes, converge si, et seulement si, elle est de
Cauchy




SUITES PARTICULIERES

I Suites arithmétiques et géométriques

• Suites arithmétiques

Une suite (un) est arithmétique de raison r si :

∀ n∈N un+1=un+r

Terme général : un =u0+nr.

Somme des n premiers termes :


• Suites géométriques

Une suite (un) est géométrique de raison q≠0 si :

∀ n∈N un+1=qun.

Terme général : un=u0qn

Somme des n premiers termes :

II Suites récurrentes

• Suites récurrentes linéaires d'ordre 2 :

– Une telle suite est déterminée par une relation du type :

(1) ∀ n∈N aUn+2+bUn+1+cUn =0 avec a≠0 et c≠0
et la connaissance des deux premiers termes u0 et u1.
L'ensemble des suites réelles qui vérifient la relation (1) est un espace vectoriel
de dimension 2.
On en cherche une base par la résolution de l'équation caractéristique :

ar2+br+c=0 (E)
– Cas a, b, c complexes
Si ∆≠0,(E) a deux racines distinctes r1et r2. Toute suite vérifiant (1) est alors
du type :
où K1 et K2 sont des constantes que l'on exprime ensuite en fonction de u0 et u1.

Si ∆=0, (E) a une racine double r0=(-b)/2a. Toute suite vérifiant (1) est alors du
type :


– Cas a, b, c réels
Si ∆>0ou ∆=0, la forme des solutions n'est pas modifiée.
Si ∆<0, (E)a deux racines complexes conjuguées r1=α+iβ et r2=α−iβ
que l'on écrit sous forme trigonométrique r1=ρeiθ et r2=ρe-iθ

Toute suite vérifiant (1) est alors du type :


• Suites récurrentes un+1=f(un)

– Pour étudier une telle suite, on détermine d'abord un intervalle I contenant toutes
les valeurs de la suite.
– Limite éventuelle
Si (un) converge vers l et si f est continue en l, alors f(l)=l.
– Cas f croissante
Si f est croissante sur I, alors la suite (un) est monotone.
La comparaison de u0 et de u1 permet de savoir si elle est croissante ou décroissante.
– Cas f décroissante
Si f est décroissante sur I, alors les suites (u2n) et (u2n+1) sont monotones et de
sens contraire




Fait par LEON
Garantie Le-Bon-Prof
favorite button
message icon
Contacter Dimitri